
Double Precision Optimized Arithmetic Hardware Design for Binary &
Floating Point Operands

Pramod Kumar Jain#1, Hemant Ghayvat #2, D.S Ajnar #3

*1, 2, 3Micro Electronics and VLSI design
**Electronics & Instrumentation Engineering department, SGSITS, Indore, MP, India

#1Email Id: pramod22_in@yahoo.com ,#2Email Id: ghayvat@gmail.com ,
#3Email Id: dsajnar@gmail.com.

Abstract - In today’s modern scientific world,
technological changes happening with a very fast rate.
The rapid growth in financial, commercial, Internet-
based applications, there is a huge demand for finding
out the devices with low latency, power and area along
with there is an increasing desire to allow computers
to operate on both binary and decimal floating-point
numbers. Accordingly, stipulation for decimal
floating-point support is being added to the IEEE-754
Standard for Floating-Point Arithmetic. In this
research work, we present the design and
implementation of a decimal floating-point adder that
is acquiescent with the current draft revision of this
standard. The adder supports operations on 64-bit
(16-digit) decimal floating-point operands [1] .We
provide synthesis results indicating the estimated area
and delay for our design when it is pipelined to
various depths. High performance computing is
strongly required in most applications which deal with
floating point Numbers. Most workstations used in
these fields are adopting a floating point processing
unit to accelerate Performance.

Keywords – Double Precision, Hardware Design,
IEEE.

I. INTRODUCTION
Various high level encoding languages have a

capability for specifying floating -point numbers. The
most frequent technique is to stipulate them by a real
declaration statement as conflicting to fixed -point
numbers, which are specified by an integer declaration
statement. Any computer that has a compiler for
handling floating point arithmetic operations. The
operations are quite often included in the internal
hardware. If no hardware available for operation, the
compiler must be designed with a package of floating
point software subroutines (program or line of logic
written once, uses more than once). Although the
hardware method is more expensive, it is so much more
efficient than the software method that floating point
hardware is included in most computers and omitted
only in very small ones[4]. Example of floating point
hardware devices are Intel 8231, arithmetic processor
and AMD’s AM9512 floating point processor. The
AM9512 provides add, subtract, multiply, and divide

operation for 32-bit and 64-bit operands. It can easily
interface to enhance the computational capabilities of
the host CPU.

II. PROBLEM OVERVIEW
The user of computer prepares data with decimal

numbers and receives results in decimal form. A CPU
with an arithmetic logic unit can perform micro
operations with binary data. To perform arithmetic
operations with decimal data, it is necessary to convert
the input numbers to binary, to perform all calculations
with binary numbers, and to convert the results into
decimal. This may be an efficient method in
applications requiring a large number of calculations
and relatively smaller amount of input and output data
[14]. But user friendly format in which it allows input
output operations in decimal but machine operation in
binary, so the input decimal data have to convert in
binary and in later part after operation converted back
to decimal. But it is quite time consuming.

When the application calls for a large amount of
input-output and a relatively smaller number of
arithmetic calculations, it becomes convenient to do the
internal arithmetic directly with the decimal numbers.
Computers capable of performing decimal arithmetic
must store the decimal data in binary coded form. The
decimal numbers are then applied to a decimal
arithmetic unit capable of executing decimal arithmetic
micro operations.

III. PROBLEM FORMULATION
We implement divide and conquer approach, in

which complex logic operations segmented or
implementation into various multiple numbers of
arithmetic logic blocks .These blocks works
independently or dependently means, output of one is
input of others. Then, we optimize whole unit, explore
boundaries and tradeoff between speed, power, area.
Electronic calculators invariably use an internal decimal
arithmetic unit since inputs and outputs are frequent,
not seem to be a reason for converting the displayed
results to decimal. Since this process requires special
circuits and also takes a longer time to execute. Many
computers have hardware for arithmetic calculations
with both binary and decimal data. Users can specify by

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

52 ISSN : 0975-8283

programmed instructions whether they want the
computer to perform calculations with binary or
decimal data. The unit accepts coded decimal numbers
and generates results in the same adopted binary code
[14].

IV. RESULT
Synthesis Reports The corresponding circuit

hardware realization is carried out by a synthesis tool.

Simulation Reports The design descriptions are
tested for their functionality at every level – behavioral,
data flow, and gate. One has to verify here whether all
the functions are carried out as expected and resolve
them. All such performance is carried out by the
simulation tool. The tool also has an editor to carry out
any corrections to the source code. Simulation involves
testing the design for all its functions, functional
sequences, timing constraints, and specifications.

Table 1: Arithmetic Unit for Double Precision
Optimized Arithmetic Hardware Design for Binary

& Floating Point Operands: Hardware Resource
Utilization Summary targeting on xc4vlx40-12ff1148

device
SI.
No

Device
Parameter

Usage
Number

Utilization %

1 Number of slices 320 1%
2 Number of slices

Flip-Flop
450 1%

3 Number of 4-
input LUTs

502 1%

4 Number of IOs 196 -
5 Number of

bounded IOBs
196 30%

6 Area Constraint
Ratio

5 -

7 Total memory
usage

281640kb -

Table 1

Table 2 Arithmetic Unit for Double Precision
Optimized Arithmetic Hardware Design for Binary
& Floating Point Operand: Comparison in terms of

Area & Delay.
Area Name of

Design
proposals

Numbe
r of bits

Delays
(ns) Slices LUT

s
Sreehar

[28]
32 8.9 - 523

Humberto
[30]

32 12.1 256 495

Haller[29] 32 10.0 305 584

Hwang
[27]

32 10.5 82 158

Fischer
[31]

32 10.3 123 233

Subhash
[14]

64 - 2325(A
ddition)
/2119

(Subtrac
tion)

-

Taher[32] 64 11.24 - -
P.Karlstrom

[18]
64 - 561 675

Our Proposal 64 11.2 320 502

Table 2

V. CONCLUSION
This research purposed a mixture of hardware

compilation, module generators, Floating point
arithmetic and automatic interface generation to
improve the efficiency, productivity and flexibility
when implementing the floating point design on the
FPGA. This dual representation is very valuable as
allows for easy navigation over all the components of
the units, which allows for a faster understanding of
their interrelationships and the different aspects of a
Floating Point operation. There are several possibilities
for improvements to the system. It would be desirable if
the coding strategy let the data path share hardware
resources for some operation. This coding strategy thus
can save area if it is critical for certain application. The
parallelism must now be implemented by the user. It
would be better if the compiler itself can detect the
dependency to reorganize the data path in which the
parallelism can be achieved automatically. Our result is
high-quality in terms of area, power, speed and trade-
off between parameter this is better explained in
comparative view

VI. REFERENCES
[1] Thompson, Nandini Karra, and Michael J. Schulte “A

64-bit Decimal Floating-Point Adder” , IEEE Computer
Society Annual Symposium on VLSI Emerging Trends
in VLSI Systems Design (ISVLSI’04)2004 IEEE.

[2] Hajime Kubosawa, Akira Katsuno, Hiromasa
Takahashi, Tomio Sato, Atsuhiro Suga and Gensuke
Goto, “A 64-bit Floating Point Processing Unit for a
RISC Microprocessor” ,Fujitsu Laboratories Ltd.10-1,
Morinosato-Wakamiya, Atsugi 243-01, Japan 1992
IEEE

[3] Akil Kaveti Dr. William r. Dieter Director of thesis Dr.
Yuming zhangDirector of graduate studies “HDL
implementation and analysis of a residual register for A
floating-point arithmetic unit” March 25, 2008 .

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 53

[4] Mano, Morris M., “COMPUTER SYSTEM
ARCHITECTURE”.

[5] “Draft IEEE Standard for Floating-Point Arithmetic”,
IEEE, inc., New York, 2003. Available from:
Http://794r.ucbtest.org/drafts/794r.pdf.

[6] M.S .Schmookler and A.W. Weinderger, “High Speed
Decimal Addition”, IEEE Transactions on. Computers,
Vol. C-20, pp. 862-867, August 1971.

[7] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M.
Schwarz, and Steven R. Carlough, “The IBM 900
Decimal Arithmetic Unit”, Conference Record of the
35th Asilomar Conference on Signals, Systems and
Computers, Vol. 2, pp. 1335-1339, IEEE, November
2001.

[8] G. Bohlender and T. Teufel, “A Decimal Floating-Point
Processor for Optimal Arithmetic”, Computer
arithmetic: Scientific Computation and Programming
Languages, pp. 31-58, 1987.

[9] M. S. Cohen, T. E. Hull, and V. Carl Hamacher,
“CADAC: A Controlled-Precision Decimal Arithmetic
Unit”, IEEETransactions on Computers, Vol. 32, No. 4,
pp. 370-377, IEEE, April 1983.

[10] RA. Kaivani A. Zaker aihosseini S. Gorgin M. Fazlali
“Reversible Implementation of Densely-Packed-
Decimal Converter to and from Binary-Coded-Decimal
Format Using in IEEE-754” , Department of Electrical
and Computer Engineering Shahid Beheshti University,
Tehran, lran.

[l1] M. F. Cowlisha, “Decimal Floating-Point: Algorism for
Computers”, Proceedings of the 16th IEEE Symposium
on Computer Anathematic, pp. 104-1 1 1, June 2003.

[12] Fadi Y. Busaba et al., “The D3M 2900 Decimal
Anthmetic Unit”, IEEE Trans. on Computers, Vol. 2,
pp. 1335-1339, Nov.2001.

[13] Andre Guntoro and Manfred Glesner “High-
Performance FPGA-Based Floating-Point Adder with
Three Inputs” 2008 IEEE, pp 37-40.

[14] Subhash Kumar Shrama, Himanshu Pandey, Shailendra
Sahni and Vishal Kumar Srivastava “Implementation
of IEEE-754 Addition and Subtraction for Floating
Point Arithmetic Logic Unit” ,International transactions
in Mathematical Sciences and
ComputerVolume3,No.1,2010,pp 131-140.

[15] Javier and Thomas “LOP for latency improvement in
single data path floating point adder”.

[16] Gerald R. Morris and Viktor K. Prasanna “Pipelined
Data path for an IEEE-754 64-Bit Floating-Point Jacobi
Solver”, Supported by the United States National
Science Foundation under award No. CCR-0311823
and in part by award No. ACI-0305763.

[17] GOVINDU G., ZHUOL. , CHOI S. , PRASANNA V.
“Analysis of high performance floating-point arithmetic
on FPGAS”. Pro c. 18th Int. Symp . Parallel and
Distributed Processing, 2004, p. 1494.

[18] P. KA RLS T R OM P. , E H LIAR A. , LIU D. “High
performance, low latency FPGA based floating point

adder and multiplier units in a virtex 4 ”.IET
Comput.Digit.Tech.,2008,Vol.2,No.4,pp.305-313/305.

 [19] CATANZARO B., NELSON B. “Higher radix floating-
point representations for fpga-based arithmetic”. Proc.
13th Annual IEEE Symp. Field-programmable Custom
Computing Machines (FCCM’05), Washington, DC,
USA, 2005, IEEE Computer Society, pp. 161 – 170.

[20] SCHWARZ E .M., SCHMOOKL ERM. , TRONG.D.
“Hardware implementations of demoralized numbers”.
Proc. 16th IEEE Symp. Computer Arithmetic, 2003, pp.
70 – 7 8.

[21] BRUNELLI C ., GARZ IA F. , NURM I J . , M UCCI
C. , CAMPI F., RO SSI D. “A FPGA implementation of
an open-source floating-point computation system”.
Proc. 2005 I nt. Symp. System-on-Chip, 2005, pp. 29 –
32.

 [22] SA NTORO M.R. , BEWICK G., HOROWI TZ M. A.
“Rounding algorithms for IEEE multipliers”. Proc. 9t h
Symp. Computer Arithmetic, 1989, pp. 176 – 183.

[23] NALLATECH ,“ Nallatech floating point cores”
Nallate ch, 2002, available at: www.nallatech.com.

[24] DE T R EY J. , DE DI NEC HI N F. , “A parameterized
floating - point exponential function for FPGAS”. IEEE
In t. Conf. Field Programmable Technology, 2005, pp.
27 – 3 4

[25] XILINX: “Floating -point operator v3.0’ (Xilinx, 2006,
3rd edn.)”, available at: www.xilinx.com.

[26] ANDRAKA R .: ‘Supercharge your DSP with ultra-fa st
floating point ffts’, DSP M a gaz in e , 2007, (3), pp. 42
– 4 4.

[27] S. Hwang. “High-Speed Binary and Decimal Arithmetic
Logic Unit”, American Telephone and Telegraph
Company, AT&T Bell Laboratories, US patent
4866656, pp. 1-11, Sep 1989.

 [28] Sreehari Veeramachaneni, M, Kirthi Krishna; V,
Prateek G, S. Subroto, S, Bharat, M.B.Srinivas, “A
Novel Carry-Look Ahead Approach to a Unified BCD
and Binary Adder/Subtractor”, 21st International
Conference on VLSI Design 2008, pp. 547-552, Jan
2008.

 [29] W. Haller, U. Krauch, and H. Wetter, “Combined
Binary/Decimal Adder Unit,” International Business
Machines Corporation, US patent 5928319, pp. 1 – 9,
Jul 1999.

[30] D.R.Humberto Calderón, G. N. Gaydadjiev, S.
Vassiliadis, “Reconfigurable Universal Adder”, Proc. of
the IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP
07), pp. 186-191, July 2007.

[31] H. Fischer andW. Rohsaint. “Circuit Arrangement for
Adding or Subtracting Operands Coded in BCD-Code
or Binary-Code”, Siemens Aktiengesellschaft, US
patent 5146423, pp. 1– 9, Sep 1992.

[32] M.Taher, M.Aboulwafa, A.Abelwahab, E.M.Saad
“High –Speed,Area-Efficientfpga-Based Floating-Point
Arithmetic Modules”.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

54 ISSN : 0975-8283

[33] IP for floating point adder
“http://hdlcores.com/dcdpdf/xil/dfpau-dp_ds.pdf” .

[34] Peter-Michael Seidel and Guy Even, “Delay-Optimized
Implementation of IEEE Floating-Point Addition”
Transactions on Computer”, Ieee Vol. 53, No. 2,
February 2004.

[35] Nikhil Kikkeri and Peter-Michael Seidel, “Optimized
Arithmetic Hardware Design based on Hierarchical
Formal Verification” ,1-4244-0395-2/06/$20.00 ©2006
IEEE.

.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 55

