

# ANALYSIS OF HIGH STEP-UP DC–DC CONVERTER OPERATION FOR PHOTOVOLTAIC MODULE APPLICATION

Vinoth kumar.P<sup>1</sup>, Rekha.J<sup>2</sup>

Assistant professor <sup>1</sup>, PG student <sup>2</sup> Karpaga vinayaga college of engineering and technology<sup>1, 2</sup> vino pandiyan@yahoo.com<sup>1</sup>, rekhapriya90@gmail.com<sup>2</sup>

Abstract-Within the photovoltaic (PV) powergeneration market, the ac PV module has shown obvious growth. However, a high voltage gain converter is essential for the module's grid connection through a dc-ac inverter. This paper proposes a converter that employs a floating active switch to isolate energy from the PV panel when the ac module is OFF; this particular design protects installers and users from electrical hazards. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor, this converter achieves a high step-up voltage-conversion ratio; the leakage inductor energy of the coupled inductor is efficiently recycled to the load and mppt is used. These features explain the module's highefficiency performance. The detailed operating principles and steady-state analyses of continuous and discontinuous conduction modes are described. A 15 V input voltage, 200 V output voltage, and 100 W output power prototype circuit of the proposed converter has been implemented; its maximum efficiency is up to 95.3% and full-load efficiency is 92.3% and simulated using MATLAB software.

*Index Terms*—AC module, coupled inductor, high step-up volt-age gain, single switch.

### I. INTRODUCTION

**PHOTOVOLTAIC** (PV) power-generation systems are becoming increasingly important and prevalent in distribution generation systems. A conventional centralized PV array is a serial connection of numerous panels to obtain higher dc-link voltage for main electricity through a dc–ac inverter [1], [30]. Unfortunately, once there is a partial shadow on some panels, the system's energy yield becomes significantly reduced [2]. An ac module is a micro inverter configured on the rear bezel of a PV panel [1]–[3]; this alternative solution not only immunizes against the yield loss by shadow effect, but also provides flexible installation options in accordance with the user's budget

[4]. Many prior research works have proposed a singlestage dc– ac inverter with fewer components to fit the dimensions of the bezel of the ac module, but their efficiency levels are lower than those of conventional PV inverters. However, employing a high step-up dc–dc converter in the front of the inverter improves powerconversion efficiency. When installing the PV generation system during daylight, for safety reasons, the ac module outputs zero voltage [4], [5]. Fig. 1 shows the solar energy through the PV panel and micro inverter to the output terminal when the switches are OFF.

When installation of the ac module is taking place, this potential difference could pose hazards to both the worker and the facilities. A floating active switch is designed to isolate the dc current from the PV panel, for when the ac module is off-grid as well as in the non operating condition. This isolation ensures the operation of the internal components without any residential energy being transferred to the output or input terminals, which could be unsafe.

The power capacity range of a single PV panel is about 100 W to 300 W, and the maxi-mum power point (MPP) voltage range is from 15 V to 40 V, which will be the input voltage of the ac module; in cases with lower input voltage, it is difficult for the ac module to reach high efficiency [3].




Fig.1. Potential difference on the output terminal of non floating switch micro inverter.



The micro inverter includes dc–dc boost converter, dc–ac inverter with control circuit as shown in Fig. 1. The dc–dc converter requires large step-up conversion from the panel's low voltage to the voltage level of the application. Previous research on various converters for high step-up applications has included analyses of the switched-inductor and switched-capacitor types [6], [7]; transformerless switched-capacitor type [8], [9], [29]; the voltage-lift type [12]; the capacitor-diode voltage multiplier [13]; and the boost type integrated with a coupled inductor [10], [11], these converters by increasing turns ratio of coupled inductor obtain higher voltage gain than conventional boost

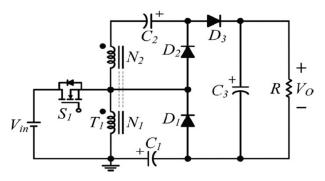
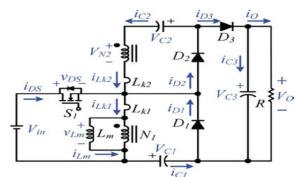




Fig. 2. Circuit configuration of proposed converter.

or the reverse-recovery issue of the diodes. In addition, the equivalent series resistance (ESR) of the capacitor and the parasitic resistances of the inductor also affect overall efficiency. Use of active clamp technique not only recycles the leakage inductor's energy but also constrains the voltage stress across the active switch, how-ever the tradeoff is higher cost and complex control circuit [25], [26]. By combining active snubber, auxiliary resonant circuit, synchronous rectifiers, or switched- capacitor-based resonant circuits and so on, these techniques made active switch into zero voltage switching (ZVS) or zero current switching (ZCS) op-eration and improved converter efficiency [20]-[24]. However, when the leakage-inductor energy from the coupled inductor can be recycled, the voltage stress on the active switch is reduced, which means the coupled inductor employed in combination with the voltage-multiplier or voltage-lift technique success-fully accomplishes the goal of higher voltage gain [6]–[13].

The proposed converter, shown in Fig. 2, is comprised of a coupled inductor  $T_1$  with the floating active switch  $S_1$ . The primary winding  $N_1$  of a coupled inductor  $T_1$  is similar to the input inductor of the conventional boost converter, and capacitor  $C_1$  and diode  $D_1$  receive leakage inductor energy from  $N_1$ . The secondary winding  $N_2$  of coupled converter. Some converters successfully combined boost and fly back converters, since various converter combinations are developed to carry out high step-up voltage gain by using the coupled-inductor technique [14]– [19], [27], [28]. The efficiency and voltage gain of the dc– dc boost converter are constrained by either the parasitic effect of the power switches



inductor  $T_1$  is connected with another pair of capacitors  $C_2$  and diode  $D_2$ , which are in series with  $N_1$  in order to further enlarge the boost voltage. The rectifier diode  $D_3$  connects to its output capacitor  $C_3$ . The proposed converter has several features: 1) The connection of the two pairs of inductors, capacitor, and diode gives a large step-up voltage-conversion ratio; 2) the leakage-inductor energy of the coupled inductor can be recycled, thus increasing the efficiency and restraining the voltage stress across the active switch; and 3) the floating active switch efficiently isolates the PV panel energy during nonoperating conditions, which enhances safety. The operating principles and steady-state analysis of the proposed converter are presented in the following sections.

# II. OPERATING PRINCIPLES OF THE PROPOSED CONVERTER

The simplified circuit model of the proposed converter is shown in Fig. 3. The coupled inductor  $T_1$  is represented as a magnetizing inductor  $L_m$ , primary and secondary leakage in-ductors  $L_{k,1}$  and  $L_{k,2}$ , and an ideal transformer. In order to sim-plify the circuit analysis of the proposed converter, the following assumptions are made.

The assumptions are list as following:

- 1) All components are ideal, except for the leakage induc-tance of coupled inductor  $T_1$ , which is being taken under consideration. The on-state resistance  $R_D$  <sub>S(O N)</sub> and all parasitic capacitances of the main switch  $S_1$  are neglected, as are the forward voltage drops of diodes  $D_1 \sim D_3$ .
- 2) The capacitors  $C_1 \sim C_3$  are sufficiently large that the



International Journal of Power Control and Computation(IJPCSC) Vol5.No.2 2013 pp 17-28 available at: <u>www.ijcns.com</u> Paper Received :15-05-2013 Paper Recepted:28-05-2013 Paper Reviewed by: 1. James Durai Raj 2.Marccus Danis Editor : Prof. P.Muthukumar

voltages across them are considered to be constant.

- 3) The ESR of capacitors  $C_1 \sim C_3$  and the parasitic resistance of coupled inductor  $T_1$  are neglected.
- 4) The turns ratio *n* of the coupled inductor  $T_1$  windings is equal to  $N_2 / N_1$ .

### **III MPPT Techniques**

### P&O Method

The Perturb and Observe (P&O) method is one of the most commonly used methods in practice. The P&O algorithms operate by periodically perturbing, i.e. incrementing or decrementing, the array terminal voltage and comparing the PV output power with that of the previous perturbation cycle. If the PV array operating voltage changes and power increases, the control system moves the PV array operating point in that direction. Otherwise the operating point is moved in the opposite direction.

The logic of this algorithm and the flowchart are explained in Fig. 4. The operating voltage of the PV system is perturbed by a small increment of  $\Box V$ , and this resulting change in  $\Box P$ . If  $\Box P$  is positive, the perturbation of the operating voltage needs to be in the same direction of the increment. On the contrary, if  $\Box P$  is negative, the obtained system operating point moves away from the MPPT and the operating voltage needs to move in the opposite direction of the increment.

A common shortcoming of this method is that the array terminal voltage is perturbed every MPPT cycle. Therefore,

when the MPP is reached, the output power oscillates around the maximum, resulting in a power loss in the PV system.

Furthermore, it sometimes fails to find the MPP under the continuously increasing or decreasing irradiation conditions.

However, employing a high step-up dc–dc converter in the front of the inverter improves power-conversion efficiency. However, employing a high step-up dc–dc converter in either the parasitic effect of the power switches.

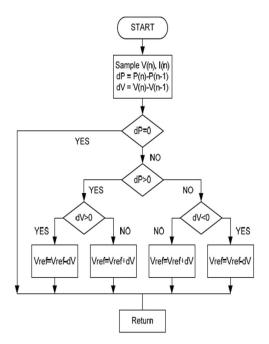



Fig 4. P&O method flowchart

The operating principle of continuous conduction mode (CCM) is presented in detail. The current waveforms of major components are given in Fig. 5. There are five operating modes in a switching period. The operating modes are described as follows

### A. CCM Operation

*Mode I* [ $t_0$ ,  $t_1$ ]: In this transition interval, the magnetizing in-ductor  $L_m$  continuously charges capacitor  $C_2$  through  $T_1$  when  $S_1$  is turned ON. The current flow path is shown in Fig. 7(a); switch  $S_1$  and diode  $D_2$  are conducting. The current  $i_{L\ m}$  is de-creasing because source voltage  $V_{\rm in}$  crosses magnetizing induc-tor  $L_m$  and primary leakage inductor  $L_{k\ 1}$ ; magnetizing inductor  $L_m$  is still transferring its energy through coupled inductor  $T_1$  to charge switched capacitor  $C_2$ , but the energy is decreasing; the charging current  $i_{L\ 2}$  and  $i_{C\ 2}$  are decreasing. The secondary leakage inductor current  $i_{L\ K\ 2}$  is declining as equal to  $i_{L\ m} / n$ . Once the increasing  $i_{L\ k\ 1}$  equals decreasing  $i_{L\ m}$  at  $t = t_1$ , this mode ends.

Mode II  $[t_1, t_2]$ : During this interval, source energy  $V_{in}$  is series connected with  $N_2$ ,  $C_1$ , and  $C_2$  to charge output ca-pacitor  $C_3$  and load R; meanwhile magnetizing inductor  $L_m$  is also receiving energy from  $V_{in}$ . The current flow path is shown in Fig. 7(b), where switch  $S_1$  remains ON, and only diode  $D_3$  is conducting. The  $i_{Lm}$ ,  $i_{Lk-1}$ , and  $i_{D-3}$  are



increasing because the  $V_{in}$  is crossing  $L_{k 1}$ ,  $L_m$ , and primary winding  $N_1$ ;  $L_m$  and  $L_{k 1}$  are storing energy from  $V_{in}$ ; meanwhile  $V_{in}$  is also seri-ally connected with secondary winding  $N_2$  of coupled inductor  $T_1$ , capacitors  $C_1$ , and  $C_2$ , and then discharges their

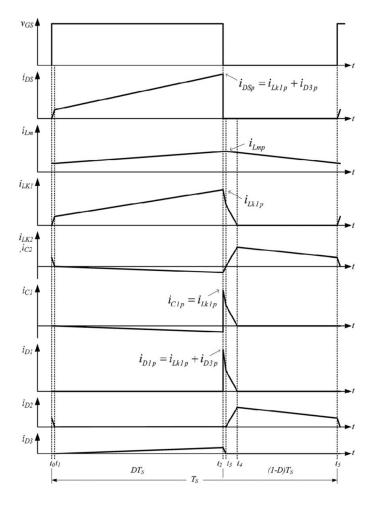



Fig. 5 Some typical waveforms of proposed converters at CCM operation.

energy to capacitor  $C_3$  and load *R*. The  $i_{in}$ ,  $i_{D-3}$  and discharging current  $i_{C-1}$  / and  $i_{C-2}$  / are increasing. This mode ends when switch  $S_1$  is turned OFF at  $t = t_2$ .

*Mode III* [ $t_2$ ,  $t_3$ ]: During this transition interval, secondary leakage inductor  $L_{k,2}$  keeps charging  $C_3$  when switch  $S_1$  is OFF. The current flow path is shown in Fig. 7(c), where only diode  $D_1$  and  $D_3$  are conducting. The energy stored in leakage inductor  $L_{k,1}$  flows through diode

 $D_1$  to charge capacitor  $C_1$  instantly when  $S_1$  is OFF. Meanwhile, the energy of secondary leakage inductor  $L_{k,2}$  is series connected with  $C_2$  to charge output capacitor  $C_3$  and the load. Because leakage inductance  $L_{k,1}$  and  $L_{K,2}$  are far smaller than  $L_m$ ,  $i_{L,k,2}$  rapidly decreases, but  $i_{L,m}$  is increasing because magnetizing inductor  $L_m$  is receiving energy from  $L_{k,1}$ . Current  $i_{L,k,2}$  decreases until it reaches zero; this mode ends at  $t = t_3$ .

Mode IV [ $t_3$ ,  $t_4$ ]: During this transition interval, the energy stored in magnetizing inductor  $L_m$  is released to  $C_1$  and  $C_2$  simultaneously. The current flow path is shown in Fig. 7(d). Only diodes  $D_1$  and  $D_2$  are conducting. Currents  $i_{L\,k\,1}$  and  $i_{D\,1}$  are continually decreased because the leakage energy still flowing through diode  $D_1$  keeps charging capacitor  $C_1$ . The  $L_m$  is delivering its energy through  $T_1$  and  $D_2$  to charge capacitor  $C_2$ . The energy stored in capacitor  $C_3$  is constantly.

discharged to the load *R*. These energy transfers result in decreases in  $i_{LI}$  and  $i_{Lm}$  but increases in  $i_L k_2$ . This mode ends when current  $i_{Lk 1}$  is zero, at  $t = t_4$ .

Mode V [ $t_4$ ,  $t_5$ ]: During this interval, only magnetizing in-ductor  $L_m$  is constantly releasing its energy to  $C_2$ . The current flow path is shown in Fig. 7(e), in which only diode  $D_2$  is con-ducting. The  $i_{L_m}$  is decreasing due to the magnetizing inductor energy flowing through the coupled inductor  $T_1$  to secondary winding  $N_2$ , and  $D_2$  continues to charge capacitor  $C_2$ . The energy stored in capacitor  $C_3$  is constantly discharged to the load R. This mode ends when switch  $S_1$  is turned ON at the beginning of the next switching period.

#### B. DCM Operation

The detailed operating principles for discontinuousconduction-mode (DCM) operation are presented in this section. Fig. 6 depicts several typical waveforms during five operating modes of one switching period. The operating modes are de-scribed as follows.

*Mode I* [ $t_0$ ,  $t_1$ ]: During this interval, source energy  $V_{in}$  is series connected with  $N_2$ ,  $C_1$ , and  $C_2$  to charge output capacitor  $C_3$  and load R; meanwhile, magnetizing inductor  $L_m$  is also receiving energy from  $V_{in}$ . The current flow path is shown in Fig. 8(a), which depicts that switch  $S_1$  remains ON, and only diode  $D_3$  is conducting. The  $i_{Lm}$ ,  $i_{Lk 1}$ , and  $i_D_3$  are increasing because the  $V_{in}$  is crossing  $L_{k 1}$ ,  $L_m$ , and primary winding  $N_1$ ;  $L_m$  and  $L_{k 1}$  are storing energy from  $V_{in}$ ; meanwhile,  $V_{in}$  also is serially connected with secondary winding  $N_2$  of coupled inductor  $T_1$ , capacitors  $C_1$ , and  $C_2$ ; then they all discharge their energy to



International Journal of Power Control and Computation(IJPCSC) Vol5.No.2 2013 pp 17-28 available at: <u>www.ijcns.com</u> Paper Received :15-05-2013 Paper Receited: 28-05-2013 Paper Reviewed by: 1. James Durai Raj 2.Marccus Danis Editor : Prof. P.Muthukumar

capacitor  $C_3$  and load R. The  $i_{in}$ ,  $i_{D-3}$  and discharging current  $|i_{C-1}|$  and  $|i_{C-2}|$  are increasing. This mode ends when switch  $S_1$  is turned OFF at  $t = t_1$ .

*Mode II* [ $t_1$ ,  $t_2$ ]: During this transition interval, secondary leakage inductor  $L_{k,2}$  keeps charging  $C_3$  when switch  $S_1$  is OFF. The current flow path is shown in Fig. 8(b), and only diode  $D_2$  and  $D_3$  are conducting. The energy stored in leakage inductor  $L_{k,1}$  flows through diode  $D_1$  to charge capacitor  $C_1$  instantly when  $S_1$  is OFF. Meanwhile, the energy of secondary leakage inductor  $L_{k,2}$  is series-connected with  $C_2$  to charge output capacitor  $C_3$  and the load. Because leakage inductance  $L_{k,1}$  and  $L_{K,2}$  are far smaller than  $L_m$ ,  $i_{L,k,2}$  decreases rapidly, but  $i_{L,m}$  is increasing because magnetizing inductor  $L_m$  is receiving energy from  $L_{k,1}$ . Current  $i_{L,k,2}$  reduces down to zero, and this mode ends at  $t = t_2$ .

*Mode III* [ $t_2$ ,  $t_3$ ]: During this transition interval, the energy stored in coupled inductor  $T_1$  is releasing to  $C_1$  and  $C_2$ . The current flow path is shown in Fig. 8(c). Only diodes  $D_1$  and  $D_2$  are conducting. Currents  $i_{Lk\,1}$  and  $i_{D\,1}$  are continually decreased because leakage energy still flowing through diode  $D_1$  keeps charging capacitor  $C_1$ . The  $L_m$  is delivering its energy through  $T_1$  and  $D_2$  to charge capacitor  $C_2$ . The energy stored in capacitor  $C_3$  is constantly discharged to the load R. These energy transfers result in decreases in  $i_{Lk\,1}$  and  $i_{Lm}$  but

increases in  $i_{L \ k \ 2}$ . This mode ends when current  $i_{L \ k \ 1}$  reaches zero at  $t = t_3$ 

*Mode IV* [ $t_3$ ,  $t_4$ ]: During this interval, only magnetizing inductor  $L_m$  is constantly releasing its energy to  $C_2$ . The current flow path is shown in Fig. 8(d), and only diode  $D_2$  is conducting The *iLm* is decreasing due to the magnetizing inductor energy flowing through the coupled inductor *T*1 to secondary winding  $N^2$ , and  $D^2$  continues to charge capacitor  $C^2$ . The energy stored in capacitor  $C^3$  is constantly discharged to the load *R*. This mode ends when current *iLm* reaches zero at  $t = t^4$ .

*Mode V [t4, t5]:* During this interval, all active components

are turned OFF; only the energy stored in capacitor C3 is continued to be discharged to the load R. The current flow path is shown in Fig. 8(e). This mode ends when switch S1 is turned ON at the beginning of the next switching period.

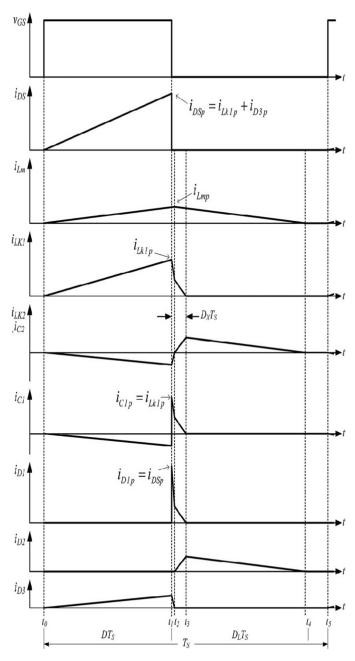



Fig. 6. Some typical waveforms of proposed converters at DCM operation



International Journal of Power Control and Computation(IJPCSC) Vol5.No.2 2013 pp 17-28 available at: <u>www.ijcns.com</u> Paper Received :15-05-2013 Paper Accepted:28-05-2013 Paper Reviewed by: 1. James Durai Raj 2.Marccus Danis Editor : Prof. P.Muthukumar

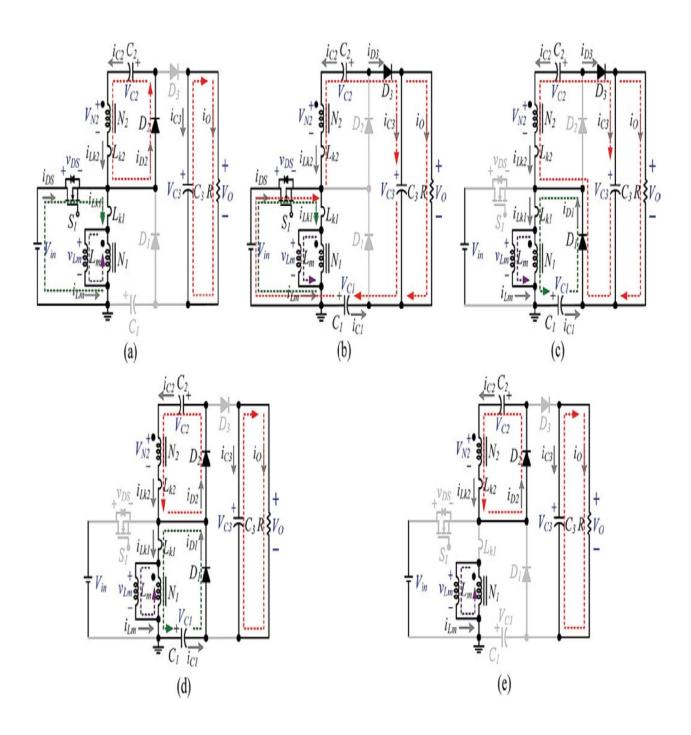



Fig. 7.Current flow path of five operating modes during. (b) Mode II:  $t_1 \sim t_2$ . (c) Mode III:  $t_2 \sim t_3$ . (d) Mde IV:  $t_3$ 



# IIISTEADY-STATE ANALYSIS OF PROPOSED CONVERTERS

# A. CCM Operation

To simplify the steady-state analysis, only modes II and IV are considered for CCM operation, and the leakage inductances on the secondary and primary sides are neglected. The following equations can be written from Fig.7(b):

$$V = V \tag{1}$$

$$V = nV$$
 (2)

During mode IV

$$V = -V \tag{3}$$

$$V = -V \tag{4}$$

Applying a volt-second balance on the magnetizing inductor *Lm* yields

$$(V) dt + (-V) dt$$
 (5)

$$(nV)dt + (-V)dt$$
 (6)

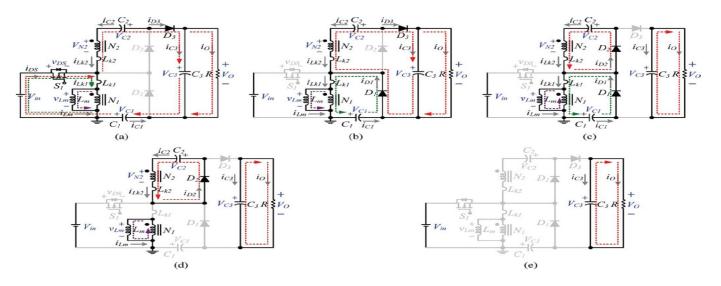
# $t_4$ . (e) Mode V: $t_4 \sim t_5$ .

From which the voltage across capacitor C1 and C2 are obtained as follows:

$$V = \frac{D}{1 - D} V$$
(7)

$$V = \frac{nD}{1-D} V$$
 (8)

During mode II, the output  $V_0 = V_{in} + V_{N2} + V_{C2} + V_{C1}$  becomes


V = V + nV + V + V (9)

The DC voltage gain Mccm can be found as follows:

$$Mccm = - = - (10)$$

Both [10] and [11] are employing coupled inductor topology as the boost type converter integrating with coupled inductor ;this technology is similar to the technology of the proposed converter.fig shows the plot of voltage gain Mccm as function of the duty ratio D of the proposed converter is compared with that of available converters[10],[11].

The chart reveals the voltage gain Mccm of the proposed converters. All of them are operating under the same conditions:CCM and n=5.



one switching period at CCM operation (a) ModeI:  $t_0 \sim t_1$ .



Fig. 8. Current flow path of five operating modes during one Mode II:  $t_1 \sim t_2$ . (c) Mode III:  $t_2 \sim t_3$ . (d) Mode IV:  $t_3$ 

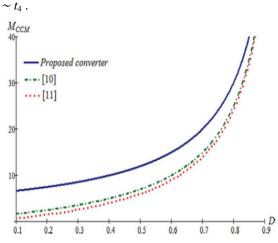



Fig 9 voltage gain as a function of the duty ratio of the proposed converter [10] and [11] under CCM operation and n=5.During CCM operation ,the voltage stresses on S1 and D1-D3 are given as

| V | = V | =     | (11) |
|---|-----|-------|------|
|   | V   | =     | (12) |
|   | V   | = ( ) | (13) |

From above equations values are calculated in ccm mode

switching period at DCM operation. (a) Mode I:  $t_0 \sim t_1$  .(b) (e) Mode V:  $t_4 \sim t_5$  .

#### **B.DCM** Operation

V

To simplify the steady-state analysis,only modes I and IV are considered for DCM operation ,and the leakage inductances on the secondary and primary sides are neglected. The following equations can be written from fig 8(b).when switch s1 is turned ON,the voltage levels across inductors Lm and secondary windingN2 are

$$V = V \tag{14}$$

$$V = nV \tag{15}$$

When switch s1 is turned OFF ,the voltage levels across inductors Lm and secondary winding N2 are

$$V = -V \tag{16}$$

$$= -V \tag{17}$$

DL Ts is the period of time during which current iLm declines from peak current to zero. The voltage across Lm and secondary winding N2 can be found, as follows, by using the volt-second balance principle

Which derives the voltage of C3,C4 and output voltage as

(

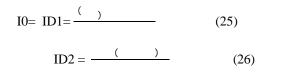
$$V = \frac{D}{DL} V$$
(20)

$$V = \frac{nD}{DL} V$$
(21)

$$V = \frac{(n+1)(D+DL)}{DL} V$$
 (22)



International Journal of Power Control and Computation(IJPCSC) Vol5.No.2 2013 pp 17-28 available at: <u>www.ijcns.com</u> Paper Received :15-05-2013 Paper Recepted:28-05-2013 Paper Reviewed by: 1. James Durai Raj 2.Marccus Danis Editor : Prof. P.Muthukumar


Equation (22) yielda DL as follows:

$$DL = \frac{()}{--} ()$$
(23)

Since the average current of capacitor Ic1,Ic2 and Ic3 are zero in steady state ,the average current values for ID3,ID2 and ID1 are,respectively,equals to the average value of I0. The ILm is the peak current of the magnetizing inductor,as shown in the following:

$$ILmp = ---- (24)$$

From fig 8(d) the average values for D1 and D2 are derived as



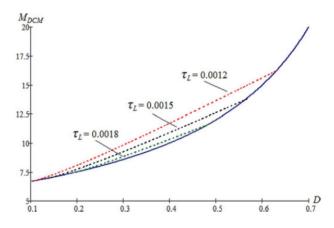



Fig. 10. Voltage gain as a function of the duty ratio of the proper under DCM operation with different  $\tau L$  by n = 5.

Since the average current values for ID 2 and ID 1 are, respectively,equal to the average value of IO (25) is equal to

(26), DX, which is defined as the duration during which diode current iD 1 travels from peak down to zero, is

$$Dx = \frac{1}{(27)}$$

Then, substituting (27) into (26), the IO can be rewritten as

$$I0 = --------------------------(28)$$

Since IO = VO / R, substituting (24) and (27) into (28) yields

$$- (0) - D = - (29)$$

The normalized magnetizing inductor time constant  $\tau L$  is defined as

$$TL = - - = - - (30)$$

where fS is the switching frequency. Substituting (30) into (29) obtains the voltage gain of the proposed converter in DCM, as follows:

$$MDCM = --- = \frac{() () () () ()}{() () ()} (31)$$

Equation (31) can be used to illustrate DCM voltage gain lines by different magnetizing inductor time constants  $\tau L$ , as shown in Fig. 10

The simulation diagram for the photovoltaic with MPPT is shown in fig 11.

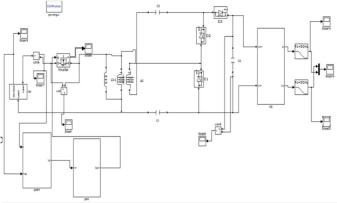



Fig .11. Simulation diagram of solar with mppt

# IV. EXPERIMENTAL RESULTS

A 100Wprototype sample is presented to verify the practicability of the proposed converter. The electrical specifications are Vin = 15V, VO = 200V, fS = 50 kHz, and full-load resistance  $R = 400 \Omega$ . The major components required are  $C1 = C2 = 47 \mu$ F and  $C3 = 220 \mu$ F. The main switch S1 is a MOSFET IXFK180N15P, the diodes D1 are MRB20200CTG, and the DPG30C300HB is selected for



D2 and D3. Since (10) assign turns ratio n = 5, the duty ratio D is derived as 55%. The boundary normalized magnetizing inductor time constant *r*LB is found by (28) to be  $1.547 \times 10-3$ . To define the proposed converter's BCM operation at 50% of the full load, the load resistance  $R = 800 \Omega$ . The boundary magnetizing inductance *L*mB is found as follows:

$$> 24.75 \mu H$$

The actual inductance of magnetizing inductor Lm of the coupled inductor is  $30.54 \,\mu\text{H}$ , which is larger than boundary magnetizing inductance 24.75  $\mu$ H. Fig. 11 shows voltage and current waveforms, which are measured from active switch S1, diodes D1, D2, and D3, and the current waveforms of C1 and C2. The measured voltage spike across the active switch is found to be about 80V; this reveals that the energy of the leakage inductor has been stored in and voltage clamped by C1 These experimental waveforms agree with the operating principles and the steady-state analysis. Fig. 12 shows that the maximum efficiency of 95.3% occurred at 40% of full load; and the full-load efficiency is maintained at 92.3%. The efficiency variation is about 3%, and the flat efficiency curve is able to yield higher energy from the PV module during periods when sunlight is fading. The residential voltage discharge time of the proposed converter is 480 milliseconds, which prevents any potential electrical injuries to humans. The experimental output waveforms is shown in fig. 12 and fig. 13.

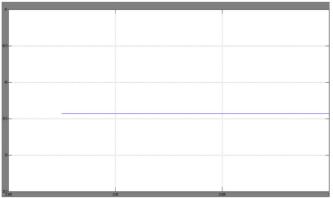



Fig 12. output from solar panel

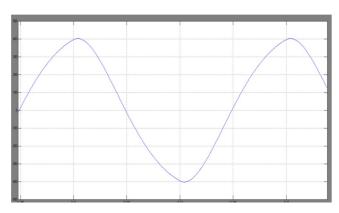



Fig .13.voltage output .

# V. CONCLUSION

Since the energy of the coupled inductor's leakage inductor has been recycled, the voltage stress across the active switch S1 is constrained, which means low ON-state resistance RDS(ON) can be selected. Thus, improvements to the efficiency of the proposed converter have been achieved. The switching signal action is performed well by the floating switch during system operation; on the other hand, the residential energy is effectively eliminated during the nonoperating condition, which improves safety to system technicians. From the prototype converter, the turns ratio n = 5 and the duty ratio D is 55%; thus, without extreme duty ratios and turns ratios, the proposed converter achieves high step-up voltage gain, of up to 13 times the level of input voltage. The experimental results show that the maximum efficiency of 95.3% is measured at half load, and a small efficiency variation will harvest more energy from the PV module during fading sunlight.

# REFERENCES

[1] T. Shimizu,K.Wada, andN.Nakamura, "Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system," *IEEE Trans. Power Electron.*, vol. 21, no. 5,pp.1264–1272, Jan. 2006.

[2] C. Rodriguez and G. A. J. Amaratunga, "Long-lifetime power inverter for photovoltaic ac modules," *IEEE Trans. Ind. Electron.*, vol. 55, no. 7,pp. 2593–2601, Jul. 2008.

[3] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," *IEEE Trans. Ind. Appl.*, vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.

[4] J. J. Bzura, "The ac module: An overview and update on self-contained modular PV systems," in *Proc. IEEE Power Eng. Soc. Gen. Meeting*, Jul. 2010, pp. 1–3.



[5] B. Jablonska, A. L. Kooijman-van Dijk, H. F. Kaan, M. van Leeuwen, G. T. M. de Boer, and H. H. C. de Moor, "PV-PRIV'E project at ECN, five years of experience with small-scale ac module PV systems," in *Proc. 20th Eur. Photovoltaic Solar Energy Conf.*, Barcelona, Spain, Jun. 2005, pp. 2728–2731.

[6] T. Umeno, K. Takahashi, F. Ueno, T. Inoue, and I. Oota, "A new approach to lowripple-noise switching converters on the basis of switched- capacitor converters," in *Proc. IEEE Int. Symp. Circuits Syst.*, Jun. 1991, pp. 1077–1080.

[7] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switchedcapacitor/ switched-inductor structures for getting transformerless hybrid dc-dc PWM converters," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 55,no. 2, pp. 687– 696, Mar. 2008.

[8]Seok-II Go, Seon-Ju Ahn, Joon-Ho Choi<sup>†</sup>, Won-Wook Jung, Sang-Yun Yun and Il-Keun Song," Simulation and Analysis of Existing MPPT Control Methods in a PV Generation System " in proc. *Journal of International Council on Electrical Engineering Vol. 1, No. 4, pp.* 446~451, 2011.

[9] H. Chung and Y. K. Mok, "Development of a switchedcapacitor dc–dcboost converter with continuous input current waveform," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 46, no. 6, pp. 756–759, Jun. 1999.

[10] T. J. Liang and K. C. Tseng, "Analysis of integrated boost-flyback step-up converter," *IEE Proc. Electrical Power Appl.*, vol. 152, no. 2, pp. 217–225,Mar. 2005.

[11] Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters,"*IEEE Trans. Power Electron.*, vol. 18, no. 1, pp. 65–73, Jan. 2003.

[12] M. Zhu and F. L. Luo, "Voltage-lift-type cuk converters: Topology and analysis," *IET Power Electron.*, vol. 2, no. 2, pp. 178–191, Mar.2009.

[13] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, "High boost converter using voltage multiplier," in *Proc. IEEE Ind. Electron. Soc. Conf. (IECON)*, 2005, pp. 567–572.

[14] J. Xu, "Modeling and analysis of switching dc-dc converter with coupledinductor," in *Proc. IEEE 1991 Int. Conf. Circuits Syst. (CICCAS)*, 1991, pp. 717–720.

[15] R. J.Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, "High-efficiency dc–dcconverter with high voltage gain and reduced switch stress," *IEEE Trans.Ind. Electron.*, vol. 54, no. 1, pp. 354–364, Feb. 2007.

[16] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications,"*IEEE Trans. Power Electron.*, vol. 26, no. 4, pp. 1146–1153, Apr. 2011.

[17] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, "Ultra large gain step-up switched-capacitor dc-

dc converter with coupled inductor for alternative sources of energy," *IEEE Trans. Circuits Syst. I*, to be published.

[18] L. S. Yang and T. J. Liang, "Analysis and implementation of a novel bidirectional dc–dc converter," *IEEE Trans. Ind. Electron.*, vol. 59, no. 1, pp. 422–434, Jan. 2012.

[19] W. Li and X. He, "Review of non-isolated high-stepup dc/dc converters in photovoltaic grid-connected applications," *IEEE Trans. Ind. Electron.*, vol. 58, no. 4, pp. 1239–1250, Apr. 2011.

[20] S. H. Park, S. R. Park, J. S. Yu, Y. C. Jung, and C. Y. Won, "Analysis and design of a soft-switching boost converter with an HI-Bridge auxiliary resonant circuit," *IEEE Trans. Power Electron.*, vol. 25, no. 8, pp. 2142–2149, Aug. 2010.

[21] G. Yao, A. Chen, and X. He, "Soft switching circuit for interleaved boost converters," *IEEE Trans. Power Electron.*, vol. 22, no. 1, pp. 80–86, Jan. 2007.

[22] Y. Park, S. Choi, W. Choi, and K. B. Lee, "Softswitched interleaved boost converters for high step-up and high power applications," *IEEE Trans.Power Electron.*, vol. 26, no. 10, pp. 2906–2914, Oct. 2011.

[23] Y. Zhao, W. Li, Y. Deng, and X. He, "Analysis, design, and experimentation

of an isolated ZVT boost converter with coupled inductors," *IEEE Trans. Power Electron.*, vol. 26, no. 2, pp. 541–550, Feb. 2011.

[24] H. Mao, O. Abdel Rahman, and I. Batarseh, "Zero-voltage-switching dc–dc converters with synchronous rectifiers," *IEEE Trans. Power Electron.*,

vol. 23, no. 1, pp. 369–378, Jan. 2008.

[25] J. M. Kwon and B. H. Kwon, "High step-up activeclamp converter with input-current doubler and outputvoltage doubler for fuel cell power systems,"*IEEE Trans. Power Electron.*, vol. 24, no. 1, p. 108–115, Jan. 2009.

[26] S. Dwari and L. Parsa, "An efficient high-step-up interleaved dc–dc converter with a commonactive clamp," *IEEE Trans.Power Electron.*, vol. 26, no. 1, pp. 66–78, Jan. 2011.

[27] C. Restrepo, J. Calvente, A. Cid, A. El Aroudi, and R. Giral, "A noninverting buck-boost dc–dc switching converter with high efficiency and wide bandwidth," *IEEE Trans. Power Electron.*, vol. 26, no. 9, pp. 2490–

2503, Sep. 2011.

[28] K. B. Park, G.W.Moon, and M. J. Youn, "Nonisolated high step-up boost converter integrated with sepic converter," *IEEE Trans. Power Electron.*,vol. 25, no. 9, pp. 2266–2275, Sep. 2010.

[29] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless dc–dc converters with high step-up voltage gain," *IEEE Trans. Ind. Electron.*, vol. 56, no. 8, pp. 3144–3152, Aug. 2009.



International Journal of Power Control and Computation(IJPCSC) Vol5.No.2 2013 pp 17-28 available at: <u>www.ijcns.com</u> Paper Received :15-05-2013 Paper Receited:28-05-2013 Paper Reviewed by: 1. James Durai Raj 2.Marccus Danis Editor : Prof. P.Muthukumar

[30] N. Pogaku, M. Prodanovic, and T. C. Green, "Modeling, analysis and testing of autonomous operation of an inverter-based microgrid," *IEEE Trans. Power Electron.*, vol. 22, no. 2, pp. 613–625, Mar. 2007.

[31] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Transformerless dc–dc converters with a very high dc line-to-load voltage ratio," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, 2003, vol. 3, pp. 435–438.