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Abstract 

        In this paper,we establish the general solution and the generalized Hyers-Ulam stability problem for 

the equation (2 ) (2 ) ( ) ( ) 6 ( ),f x y f x y f x y f x y f x                                             (1) 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

   1.  Introduction 

               In 1940, S.M.Ulam [20] gave a wide ranging talk before the mathematics club of the 

University of Wisconsin in which he discussed a number of important unsolved problems. Among 

those was the question concerning the stability of homomorphisms: 

             It is significant for us to decrease the possible estimator of the stability problem for the 

functional equations. This work is possible if we consider the stability problem in the of Hyers-

Ulam-Rassias for a  functional equations(1). As a reselt, we have much better possible upper 

bounds for the equations (1) than those of Czerwik [4] and Skof-Cholewa[3]. 

Solution of (2 ) (2 ) ( ) ( ) 6 ( ),f x y f x y f x y f x y f x         

       Let 

denote the set of all nonnegative real numbers and let both 1E and 2E be the vector spaces. 

        We here present the general solution of (1) 

        Theorem 1 

Let 
2: X   be a function such that 
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Suppose that a function :f X Y  Satisfies

|| (2 ) (2 ) ( ) ( ) 6 ( ) || ( , )f x y f x y f x y f x y f x x y         , 1.,x y E               (4) 

For all , .x y X Then there exists a unique quadratic function :T X Y Which Satisfies the 

equation (2.3) and the inequality 
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for all   .x X The function T is given by 
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for all .x X  

Proof: 

Putting y = 0 in (2 ) (2 ) ( ) ( ) 6 ( ),f x y f x y f x y f x y f x          and divided by 8, we have 
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for all   .x X  Replacing x by 2x in (7) and dividing by 4 and summing the resulting inequality 

with (7), we get 
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for all   .x X Using the induction on a positive integer n,we obtain that 
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for all   .x X In order to prove convergence of the sequence 
(2 )

4

n

n

f x 
 
 

, we divide inequality(9) 

by 4m
 and also replace x by 2m x  to find that for n,m>0, 
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Since the right hand side of the inequality tends to 0 as m tends to infinity,the sequence 
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4
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is a Cauchy sequence. Therefore, we may define 2( ) 2 (2 )lim
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for all   .x X  

By letting n  in (9), we arrive at the formula (5). 

To show that T satisfies the equation (2.3), replace x,y by 2 ,2n nx y ,respectively in 

(2 ) (2 ) ( ) ( ) 6 ( ),f x y f x y f x y f x y f x          and divided by 4n
,then it follows that            

4 (2 (2 )) (2 (2 )) (2 ( )) (2 ( )) 6 (2 ) 4 (2 ,2 ).n n n n n n n n nf x y f x y f x y f x y f x x y           

Taking the limits as n ,we find that T satisfies (2.3) for all , .x y X  

To prove the uniqueness of the quadratic function T subject to (1), let us assume that there exists a 

quadratic function :S X Y  which satisfies (2.3) and the inequality (1). 

Obviously,we have (2 ) 4 ( )n nS x S x  and (2 ) 4 ( )n nT x T x  For all   x X and .n Hence it 
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For all   .x X By letting n  in the preceding inequality,we immediately find the uniqueness 

of T. This completes the proof of the theorem. 

Throughout this paper,Let B be a unital Banach algebra with norm|.|, and let 1B B   and 2B B  be the 

left Banach B-modules with norm||.||  and ||.||,respectively. 

A quadratic mapping 1 2: B BQ B B is called B-quadratic if 

2( ) ( ),Q ax a Q x   1., Ba B x B     

Corollary1.1. 

Let 1 1: B BB B   be a function satisfies (1) and (2) for all 1., Bx y B Suppose that a mapping 

1 2: B Bf B B  satisfies 

2 2 2(2 ) (2 ) ( ) ( ) 6 ( ) ( , )f x y f x y f x y f x y f x x y                 

For all (| | 1)B    and for all 1,, Bx y B and f is measurable or f(tx) is continuous in t  for 

each fixed 1.Bx B Then there exists a unique B-quadratic mapping 1 2: ,B BT B B defined 

by(5), which satisfies the equation (2.3) and the inequality (1) for all 1.Bx B  
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Proof: 

By theorem 3.1, it follows from the inequality of the statement for 1   that there exists a unique 

quadratic mapping  1 2: B BT B B  satisfying the inequality(3.4) for all 1.Bx B Under the 

assumption that f is measurable or f(tx) is continuous in x  for each fixed 1,Bx B by the 

same reasoning as the proof of [5],The quadratic mapping 1 2: B BT B B  satisfies 

2( ) ( )T tx t T x , 1, .Bx B t     

That is,T is -quadratic. For each fixed (| | 1)B   , replacing f by T and setting y = 0 in 

(2.3),we have 2( ) ( )T x T x   for all 1,Bx B The last relation is also true for 0.  For each 
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So the unique -quadratic mapping 1 2: ,B BT B B  is also B-quadratic,as desired. 

This completes the proof of the corollary. 

Corollary 1.2. 

Let E1 and E2 be Banach spaces over the complex field , and let 0  be  a real number. 

Suppose that a mapping f: E1E2 satisfies 
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For all  (| | 1)    andfor all 1,,x y E and f is measurable or ( )f tx continuous in  t  for 

each fixed 1x E . Then there exists a unique -quadratic mapping 1 2:T E E which 

satisfies the equation (1.3) and the inequality 

( ) ( )
6
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Corollary 1.3 

Let X and Y be a real normed space and Banach space,respectively, and let , ,p q  be real 

numbers such that 0, 0q   and either , 2p q   or , 2p q  . Suppose that a function 

:f X Y satisfies 

 (2 ) (2 ) ( ) ( ) 6 ( )
p q

f x y f x y f x y f x y f x x y           

for all , .x y X Then there exists a unique quadratic function :T X Y  which satisfies the 

equation (1.3) and the inequality 
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all x X . Further, if for each fixed x X  the mapping ( )t f tx  from  to Y is 

continuous, then 2( ) ( )T rx r T x  for all .r  

The proof of the corollary. 

 

Corollary 1.4 

Let X and Y be a real normed space and a Banach space,respectively, and let 0  be real 

number. Suppose that a function :f X Y satisfies 
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For all , .x y X Then there exists a unique quadratic function :T X Y  defined by 
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Corollary 1.5 
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for all .x X Further, if for each fixed x X the mapping ( )t f tx  from  to Y is continuous, 

then 
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